1) Find the product below. (15 points)

$$\begin{bmatrix} 1 & 0 & 2 \\ 3 & 7 & 1 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & -2 \\ 0 & 2 & 5 \\ -1 & 0 & 3 \end{bmatrix}$$

2) Row reduce the matrix below to reduced echelon form. (15 points)

$$\begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 3 & 8 & 11 \\ 4 & 10 & 14 \end{bmatrix}$$

3) Find the null space of the matrix below. (15 points)

$$\begin{bmatrix} 1 & 2 & 0 & 3 \\ 1 & 3 & 0 & 5 \\ 0 & 0 & 1 & -4 \end{bmatrix}$$

4) Express the span below in set builder notation. Do not include redundant vectors. (10 points)

	/([1]		[2]		[0]		[3]	I)`	١
span		1	,	3	,	0	,	5	{	
	\setminus			0		1		-4),	J

- 5) Answer the following questions. (3 points each)
 - A) Let *A* be a 4 × 4 matrix which, when row reduced, has 4 pivots. How many solutions can the equation $A\vec{x} = \vec{0}$ have?

- B) Let *A* be a 4 × 4 matrix which, when row reduced, has 3 pivots. How many solutions can the equation $A\vec{x} = \begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}$ have?
- C) Let $A\vec{x} = \vec{0}$ be a system of 5 equations in 3 variables. If the row space of A is \mathbb{R}^3 , how many solutions can the system have?

D) Let *A* be a 6 × 7 matrix for which $A\vec{x} = \vec{b}$ with $\vec{b} \neq \vec{0}$ has no solutions. When row reduced, what is the maximum number of pivots *A* can have?

E) Let A be a 3×3 matrix that is a product of elementary matrices. Does A have an inverse?

6) Multiply the matrices below. (6 points)

г0	1	0	0	ר0	г2	0	1	0	ר0
2	0	1	0	0	2	3	4	5	3
0	0	0	1	0	6	7	8	9	3
4	0	0	0	1	1	2	3	4	4
L5	0	0	0	0]	L5	6	7	8	5J

7) Multiply the matrices below (6 points)

г1	0	0	0	ך0	г2	0	1	0	ך0	
1	1	0	0	0	2	3	4	5	3	
0	0	1	0	0	6	7	8	9	3	
0	0	0	2	0	1	2	3	4	4	
LO	0	0	0	01	L5	6	7	8	5]	
-0	U	U	U	0-	-5	0	/	0	27	

8) Find the angle between the two vectors below. You may use the unit circle provided here. (6 points)

$$\vec{v} = \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \vec{w} = \begin{bmatrix} -1\\3\\0\\0 \end{bmatrix}$$

9) Solve the system of equations below. (6 points)

10) How many solutions does matrix equation below have? (6 points)

$$\begin{bmatrix} 1 & 4 & 3 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$